Design of Ultra Low Power SRAM Cell

نویسندگان

  • K. M. Santhoshi Priya
  • K. Prasad
  • S. Ahmed Basha
  • K. Sudhakar
چکیده

In order to achieve a longer battery life suppression of energy consumption is vital. A demand for design methods for less energy consumption is increasing. The subthreshold scaling can reduce energy per cycle significantly by the scaling of supply voltage (VDD) below threshold voltage (Vth). Threshold voltage of CMOS technology represents the value of the gate-source voltage when the current in a MOS transistor starts to increase significantly since the conduction layer just begins to appear. MOS transistor can also function correctly with a supply voltage below its threshold voltage (Vth), which is referred to as sub-threshold operation or weak-inversion of a transistor. The circuits that work under a supply voltage in the sub-threshold range are named sub-threshold circuits. In ultra low power design, the operation of circuit in subthreshold regime is most important and the SRAM circuit has the limitation of read disturb. In order to eliminate this limitation The Single-ended design is used. In this paper we propose the single-ended with dynamic feedback control (SE-DFC) cell. In this paper focus is mainly on the stability of the cell which is affected by the process parameter variations. Various foundry technologies are used for the design of SE-DFC ram cell and the one with least power dissipation is proposed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy Efficient Novel Design of Static Random Access Memory Memory Cell in Quantum-dot Cellular Automata Approach

This paper introduces a peculiar approach of designing Static Random Access Memory (SRAM) memory cell in Quantum-dot Cellular Automata (QCA) technique. The proposed design consists of one 3-input MG, one 5-input MG in addition to a (2×1) Multiplexer block utilizing the loop-based approach. The simulation results reveals the excellence of the proposed design. The proposed SRAM cell achieves 16% ...

متن کامل

Analysis of Design of Schmitt Trigger Based SRAM Cell Using a Novel Power Reduction Technique

In low power SRAM memory cell design Power dissipation through standby leakage and dynamic loss is a major problem. this paper is mainly based on low power cell operation and delay of SRAM designing this paper presents a novel technique to reduce short circuit power. The differential SRAM for ultra low voltage design for Schmitt trigger (ST) is analyzed using 180nm CMOS technology. Schmitt trig...

متن کامل

A Sub-threshold 9T SRAM Cell with High Write and Read ability with Bit Interleaving Capability

This paper proposes a new sub-threshold low power 9T static random-access memory (SRAM) cell compatible with bit interleaving structure in which the effective sizing adjustment of access transistors in write mode is provided  by isolating writing and reading paths. In the proposed cell, we consider a weak inverter to make better write mode operation. Moreover applying boosted word line feature ...

متن کامل

Design of 1024*16 Cm8 Ultra Low Voltage Sram with Self Time Power Reduction Technique

Technology scaling has enabled us to integrate both memory and logic circuits on a single chip. However, the performance of embedded memory and especially SRAM (Static Random Access Memory) that is widely used in the industry as on the on-chip memory cache in ultra low voltage applications can adversely affect the speed and power efficiency of the overall system. This report discusses the desig...

متن کامل

Ultra Low-Power Fault-Tolerant SRAM Design in 90nm CMOS Technology

.................................................................................................................................. iii TABLE OF CONTENTS ............................................................................................................... iv LIST OF FIGURES ....................................................................................................................

متن کامل

Ultra low voltage and low power Static Random Access Memory design using average 6.5T technique

Power Stringent Static Random Access Memory (SRAM) design is very much essential in embedded systems such as biomedical implants, automotive electronics and energy harvesting devices in which battery life, input power and execution delay are of main concern. With reduced supply voltage, SRAM cell design will go through severe stability issues. In this paper, we present a highly stable average n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017